A New Noncanonical Nuclear Genetic Code Translation of UAA into Glutamate
نویسندگان
چکیده
Deviant genetic codes reported in ciliates share the same feature: one (UGA) or two (UAR) of the three canonical stop codons are translated into one particular amino acid. In many genera, such as Oxytricha, Paramecium, and Tetrahymena, UAR codons are translated into glutamine. UGA is translated into cysteine in Euplotes or into tryptophan in Colpoda inflata and Blepharisma americanum. Here, we show that three peritrich species (Vorticella microstoma, Opisthonecta henneguyi, and Opisthonecta matiensis) translate UAA into glutamate and that at least UAA in O. matiensis is decoded through a mutant suppressor-like tRNA. This kind of genetic code has never been reported for any living organism. Phylogenetic analysis with alpha-tubulin sequences corroborates that peritrichs, peniculines (Paramecium), and hymenostomates (Tetrahymena) form a monophyletic group (class Oligohymenophorea). The differential translation (glu/gln) of UAR codons, the monophyly of the Oligohymenophorea, and the common evolutionary origin of glutamate and glutamine suggest that deviant genetic codes of present-day oligohymenophoreans could have the same origin.
منابع مشابه
Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system.
Cell-free protein synthesis offers a facile and rapid method for synthesizing, monitoring, analyzing, and purifying proteins from a DNA template. At the same time, genetic code expansion methods are gaining attention due to their ability to site-specifically incorporate unnatural amino acids (UAAs) into proteins via ribosomal translation. These systems are based on the exogenous addition of an ...
متن کاملProbing unnatural amino acid integration into enhanced green fluorescent protein by genetic code expansion with a high-throughput screening platform
BACKGROUND Genetic code expansion has developed into an elegant tool to incorporate unnatural amino acids (uAA) at predefined sites in the protein backbone in response to an amber codon. However, recombinant production and yield of uAA comprising proteins are challenged due to the additional translation machinery required for uAA incorporation. RESULTS We developed a microtiter plate-based hi...
متن کاملAn Unprecedented Non-canonical Nuclear Genetic Code with All Three Termination Codons Reassigned as Sense Codons
A limited number of non-canonical genetic codes have been described in eukaryotic nuclear genomes. Most involve reassignment of one or two termination codons as sense ones [1-4], but no code variant is known that would have reassigned all three termination codons. Here, we describe such a variant that we discovered in a clade of trypanosomatids comprising nominal Blastocrithidia species. In the...
متن کاملResidue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System.
The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition t...
متن کاملA bacterial strain with a unique quadruplet codon specifying non-native amino acids.
The addition of noncanonical amino acids to the genetic code requires unique codons not assigned to the 20 canonical amino acids. Among the 64 triplet codons, only the three nonsense "stop" codons have been used to encode non-native amino acids. Use of quadruplet "frame-shift" suppressor codons provides an abundant alternative but suffers from low suppression efficiency as a result of competing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 13 شماره
صفحات -
تاریخ انتشار 2003